- Available C++ Libraries FAQ - 1 Update
- Function Pointer from Lambda with Captures - 3 Updates
- bitfields compact packing within a struct or class - 4 Updates
- legal UTF-8 characters in Identifiers ? - 1 Update
Nikki Locke <nikki@trumphurst.com>: Apr 14 10:23PM Available C++ Libraries FAQ URL: http://www.trumphurst.com/cpplibs/ This is a searchable list of libraries and utilities (both free and commercial) available to C++ programmers. If you know of a library which is not in the list, why not fill in the form at http://www.trumphurst.com/cpplibs/cppsub.php Maintainer: Nikki Locke - if you wish to contact me, please use the form on the website. |
Frederick Virchanza Gotham <cauldwell.thomas@gmail.com>: Apr 14 12:15PM -0700 Since C++11, there has been an implicit conversion from a lambda to a function pointer so long as the lambda has no captures. If the lambda has captures, the implicit conversion is disabled. However it's easy to get a function pointer from a lambda-with-captures if we use global variables or the heap, something like: std::function<void(void)> f; // global object void Func(void) { f(); // invokes the global object } void Some_Library_Func(void (*const pf)(void)) { pf(); } int main(int argc, char **argv) { auto mylambda = [argc](void) -> void { cout << "Hello " << argc << "!" << endl; }; f = mylambda; Some_Library_Func(Func); } It is possible though to procure a normal function pointer from a lambda-with-captures without making use of global variables or the heap -- it can all be kept on the stack. To invoke a capture lambda, we need two pieces of data: Datum A: The address of the lambda object Datum B: The address of the 'operator()' member function Datum A is a pointer into data memory. Datum B is a pointer into code memory. The technique described in this post will only work on CPU's where the program counter can be set to an address in data memory, and therefore we will use 'void*' for Datum B rather than 'void(*)(void)'. I'm open to correction here but I think this technique will work on every implementation of C++ in existence today, even on microcontrollers such as the Texas Instruments F28069 and the Arduino Atmel sam3x8e. We will define a simple POD struct to hold these two pieces of data: struct LambdaInfo { void *data, *code; }; Let's write a function that invokes a capture lambda, passing the 'this' pointer as the first argument to the member function: void InvokeLambda(LambdaInfo const *const p) { void (*pf)(void*) = (void (*)(void*))p->code; return pf(p->data); } And now let's check what this got compiled to on an x86_64 computer: mov rdx,QWORD PTR [rdi] mov rax,QWORD PTR [rdi+0x8] mov rdi,rdx jmp rax What we've got here is four instructions. To see a little more clearly what's going on here, I'm going to replace the function arguments with numerical constants: void InvokeLambda(void) { void (*pf)(void*) = (void (*)(void*))0x1122334455667788; return pf( (void*)0x99aabbccddeeffee ); } gets compiled to: movabs rdi,0x99aabbccddeeffee movabs rax,0x1122334455667788 jmp rax What we've got here now is three simple instructions. Here's the assembler alongside the machine code: movabs rdi,0x99aabbccddeeffee 48 bf ee ff ee dd cc bb aa 99 movabs rax,0x1122334455667788 48 b8 88 77 66 55 44 33 22 11 jmp rax ff e0 What we have here is 22 bytes worth of CPU instructions, which we can put into a byte array as follows: char unsigned instructions[22u] = { 0x48, 0xBF, 0xEE, 0xFF, 0xEE, 0xDD, 0xCC, 0xBB, 0xAA, 0x99, 0x48, 0xB8, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11, 0xFF, 0xE0, }; This 22-byte array can be our thunk. I'll write a class to manage the thunk: class LambdaThunk { char unsigned instructions[22u]; void SetData(void const volatile *const p) volatile { char unsigned const volatile *const q = (char unsigned const volatile *)&p; this->instructions[2] = q[0]; this->instructions[3] = q[1]; this->instructions[4] = q[2]; this->instructions[5] = q[3]; this->instructions[6] = q[4]; this->instructions[7] = q[5]; this->instructions[8] = q[6]; this->instructions[9] = q[7]; } void SetCode(void const volatile *const p) volatile { char unsigned const volatile *const q = (char unsigned const volatile *)&p; this->instructions[12] = q[0]; this->instructions[13] = q[1]; this->instructions[14] = q[2]; this->instructions[15] = q[3]; this->instructions[16] = q[4]; this->instructions[17] = q[5]; this->instructions[18] = q[6]; this->instructions[19] = q[7]; } public: LambdaThunk(void) // set the opcodes { this->instructions[ 0u] = 0x48u; // movabs rdi this->instructions[ 1u] = 0xBFu; this->instructions[10u] = 0x48u; // movabs rax this->instructions[11u] = 0xB8u; this->instructions[20u] = 0xFFu; // jmp rax this->instructions[21u] = 0xE0u; } template<typename LambdaType> void AdaptFrom(LambdaType &arg) volatile { this->SetData(&arg); this->SetCode( (void*)&LambdaType::operator() ); // The previous line works fine with GNU g++ } template<typename LambdaType> LambdaThunk(LambdaType &arg) : LambdaThunk() // set opcodes { this->AdaptFrom<LambdaType>(arg); } void (*getfuncptr(void) const volatile)(void) { return (void(*)(void))&this->instructions; } }; And now let's write some test code to try it out: #include <iostream> // cout, endl using std::cout; using std::endl; void Some_Library_Func( void (*const pf)(void) ) { pf(); } int main(int argc, char **argv) { auto mylambda = [argc](void) -> void { std::cout << "Hello " << argc << "!" << std::endl; }; Some_Library_Func( LambdaThunk(mylambda).getfuncptr() ); cout << "Last line in Main" << endl; } This works fine, you can see it up on Godbolt here: https://godbolt.org/z/r84hEsG1G Things get a little more complicated if the lambda has a return value, and several parameters. For example if the lambda returns a struct containing 17 int's, 33 double's, and if the lambda takes 18 parameters, then the assembler for 'InvokeLambda' is a little more complicated: struct ReturnType { int a[17]; double b[33]; void (*c)(int); std::string d; }; ReturnType InvokeLambda(int arg1, double arg2, float arg3, int arg4, double arg5, float arg6, int arg7, double arg8, float arg9, int arg10, double arg11, float arg12, int arg13, double arg14, float arg15, int arg16, double arg17, float arg18) { ReturnType (*pf)(void volatile *,int,double,float, int,double,float, int,double,float, int,double,float, int,double,float, int,double,float) = (ReturnType (*volatile)(void volatile*, int,double,float, int,double,float, int,double,float, int,double,float, int,double,float, int,double,float))0x1122334455667788; return pf( (void volatile *volatile)0x99aabbccddeeffee, arg1,arg2,arg3,arg4,arg5,arg6, arg7,arg8,arg9,arg10,arg11,arg12, arg13,arg14,arg15,arg16,arg17,arg18); } gets compiled to: push rbx movss xmm8,DWORD PTR [rsp+0x30] mov rbx,rdi sub rsp,0x8 movss DWORD PTR [rsp],xmm8 push QWORD PTR [rsp+0x30] mov eax,DWORD PTR [rsp+0x30] push rax movss xmm8,DWORD PTR [rsp+0x30] movabs rax,0x1122334455667788 sub rsp,0x8 movss DWORD PTR [rsp],xmm8 push QWORD PTR [rsp+0x30] push r9 mov r9d,r8d mov r8d,ecx mov ecx,edx mov edx,esi movabs rsi,0x99aabbccddeeffee call rax mov rax,rbx add rsp,0x30 pop rbx ret which is 94 bytes worth of instructions instead of 22. Still manageable. I'm not suggesting that a lambda-with-captures should convert implicitly to a function pointer, because then we'd have the issue of the lifetime of the thunk. Anyone got any thoughts on this? |
David Brown <david.brown@hesbynett.no>: Apr 14 09:58PM +0200 On 14/04/2023 21:15, Frederick Virchanza Gotham wrote: > has captures, the implicit conversion is disabled. However it's easy to > get a function pointer from a lambda-with-captures if we use global > variables or the heap, something like: <snip> > Anyone got any thoughts on this? My first thought is "why?". What are you actually trying to achieve that is so crucial as to be worth this monstrosity? I know (from previous threads) that you enjoy figuring out this kind of thing, and fun and curiosity are perfectly good reasons. But I would like to know if there are any other reasons or use-cases for this. |
"Alf P. Steinbach" <alf.p.steinbach@gmail.com>: Apr 14 11:32PM +0200 On 2023-04-14 9:15 PM, Frederick Virchanza Gotham wrote: > f = mylambda; > Some_Library_Func(Func); > } That idea works for a more general portable solution. An assembly language solution, as you presented (snipped), can use less space, which can be important for embedded system programming, but we're talking a handful of byte per thunk. So I just put a generous capacity of 97 recursive calls in this code: #include <array> #include <functional> #include <utility> #include <type_traits> #include <assert.h> // assert #include <stddef.h> // size_t #include <fmt/core.h> // <url: https://github.com/fmtlib/fmt>, for output. namespace my { using std::array, // <array> std::function, // <functional> std::index_sequence, std::make_index_sequence; // <utility> template< class T > using type_ = T; template< class T > using ref_ = T&; template< class T > using in_ = ref_<const T>; template< class Result, class... Params > class Thunked_ { using Func = auto( Params... ) -> Result; using Wrapped_func = function<Func>; int m_index; enum{ capacity = 97 }; static inline Wrapped_func the_wrapped_funcs[capacity]; template< size_t i > static auto invoke_( Params... params ) -> Result { return the_wrapped_funcs[i]( params... ); } template< size_t... indices > static auto make_invokers( index_sequence<indices...> ) -> array<Func*, capacity> { static_assert( sizeof...( indices ) == capacity ); return { &invoke_<indices>... }; } using Indices = make_index_sequence<capacity>; static inline array<Func*, capacity> the_invokers = make_invokers( Indices() ); static inline int n_in_use = 0; public: Thunked_( Wrapped_func f ): m_index( n_in_use ) { assert( n_in_use < capacity ); // TODO: exception, not assertion. the_wrapped_funcs[m_index] = move( f ); ++n_in_use; } Thunked_( in_<Thunked_> ) = delete; auto operator=( in_<Thunked_> ) -> ref_<Thunked_> = delete; ~Thunked_() { --n_in_use; } auto func_ptr() const -> Func* { return the_invokers[m_index]; } operator Func*() const { return func_ptr(); } }; } // namespace my namespace app { using std::function; // <functional> function<void()> global_f; void call_f() { global_f(); // invokes the global object } void some_library_func( void pf() ) { pf(); } void run() { const int x = 42; const auto my_lambda = [&x]() -> void { fmt::print( "Hello {:d}!\n", x ); }; #ifndef USE_GLOBAL some_library_func( my::Thunked_<void>( my_lambda ) ); #else // Original example code using global: global_f = my_lambda; some_library_func( &call_f );
Subscribe to:
Post Comments (Atom)
|
No comments:
Post a Comment